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Humans are pretty good at Systematic Generalization
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Humans are pretty good at Systematic Generalization

● If you know what “a cat chases a mouseˮ means, no trouble understanding 
what “a Roomba chases an elephantˮ means

○ Even if you have never encountered the phrase before

● Systematic generalization1 is the consistent application of learned rules to 
unseen situations

1 Fodor and Pylyshyn. Connectionism and cognitive architecture: A critical analysis. Cognition, 1988.
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Humans are pretty good at Systematic Generalization

Humans are pretty good at Compositional Generalization

● If you understand “red sphereˮ and “blue cube,ˮ  you understand “red cubeˮ

1 Fodor and Pylyshyn. Connectionism and cognitive architecture: A critical analysis. Cognition, 1988.

● If you know what “a cat chases a mouseˮ means, no trouble understanding 
what “a Roomba chases an elephantˮ means

○ Even if you have never encountered the phrase before

● Systematic generalization1 is the consistent application of learned rules to 
unseen situations
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But machine learning models can be pretty bad at behaving 
systematically and understanding compositionality



● Standard i.i.d. assumption in machine learning: Test data comes from the 
same distribution as the training data
○ Possible catastrophic drops in performance when violated

● For a model capable of systematic generalization
○ Instead of performance depending on divergence between training and test distributions,
○ Performance depends on the discrepancy in the mechanistic processes generating the 

training and testing observations

10

But machine learning models can be pretty bad at behaving 
systematically and understanding compositionality
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How a model behaves on samples outside the training 
distribution depends on its inductive biases
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How a model behaves on samples outside the training 
distribution depends on its inductive biases

● Inductive biases: assumptions by a model to generalize to unseen data
○ Shaped by network architecture, training objective, regularization, optimization, etc.
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How a model behaves on samples outside the training 
distribution depends on its inductive biases

What are the inductive biases behind human learning that 
allows us to systematically generalize?

● Inductive biases: assumptions by a model to generalize to unseen data
○ Shaped by network architecture, training objective, regularization, optimization, etc.



Cognitive bottlenecks

● Overwhelming abundance of stimuli around us,
and human mental resources are limited

● Our cognitive processes impose bottlenecks for what information is 
stored, retained, and consciously attended

○ The inductive biases imparted by these bottlenecks are crucial for systematicity

14



Cognitive bottlenecks we will discuss:

1. Iterated learning
2. Forgetting and relearning
3. Selective attention

15

This thesis explores how inductive biases in machine learning can be 
informed and developed through insights from cognitive bottlenecks 

behind human learning and knowledge representation



1 Iterated Learning



Iterated learning with humans

17

Based on 1,2

1 Kirby et al. Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. National Academy of Sciences 2008.
2 Kirby et al. Iterated learning and the evolution of language. Current opinion in neurobiology 28 2014.
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Iterated learning with humans
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Based on 1,2

1 Kirby et al. Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. National Academy of Sciences 2008.
2 Kirby et al. Iterated learning and the evolution of language. Current opinion in neurobiology 28 2014.



Learning bottleneck

● Need to learn an highly expressive language
○ Through limited supervision

● Language properties likely to pass through become universal

○ Compositional rules are more likely to survive the transmission 1
■ Easier to learn
■ Faster to learn

211 Kirby. Spontaneous evolution of linguistic structure-an iterated learning model of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary 
Computation 2001.
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Iterated learning in machine learning

● In 2020, iterated learning IL) in ML stayed close to its Cog Sci roots
○ Most of the work involved agents playing very simplistic referential games 1,2,3,4,5

● Claim: Learning bottleneck is a fundamental way to recover structure

● We demonstrated broader applicability through the more complex task of 
visual question-answering VQA

○ Recently, IL has been applied to improve compositional generalization in large 
vision-language models like CLIP 6

23

1 Li and Bowling. Ease-of-teaching and language structure from emergent communication. 
NeurIPS 2019.

2 Ren et al. Compositional languages emerge in a neural iterated learning model. ICLR 2020.
3 Dagan et al. Co-evolution of language and agents in referential games. EACL 2021.

4 Cogswell et al. Emergence of compositional language with deep generational transmission. 
arXiv:1904.09067 2019.

5 Guo et al. The emergence of compositional languages for numeric concepts through iterated learning 
in neural agents. arXiv:1910.05291 2019.

6 Zheng et al. Iterated learning improves compositionality in large vision-language models. CVPR 2024.



Iterated learning in machine learning

● In 2020, iterated learning IL) in ML stayed close to its Cog Sci roots
○ Most of the work involved agents playing very simplistic referential games 1,2,3,4,5

● Claim: Learning bottleneck is a fundamental way to recover structure

● We demonstrated broader applicability through the more complex task of 
visual question-answering VQA

○ Since then, IL has been applied to improve compositional generalization in larger and 
real-world settings, e.g., training vision-language models like CLIP 6

24
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Visual question-answering VQA

25

Q Is a green shape left of a square?

Image taken from SHAPES 1)

1 Andreas et al. Neural module networks. CVPR 2016.



Visual question-answering VQA

26

Q Is a green shape left of a square?

Image taken from SHAPES 1)

A Yes

1 Andreas et al. Neural module networks. CVPR 2016.



Program:

Visual question-answering VQA

27

Q Is a green shape left of a square?

Image taken from SHAPES 1)

A Yes

and(
    color[green]( scene ),
    transform[left_of](
         shape[square]( scene )
    )
)

1 Andreas et al. Neural module networks. CVPR 2016.
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Neural module networks NMNs1,2

and(
    color[green]( scene ),
    transform[left_of](
         shape[square]( scene )
    )
)

program 
generator

is a green shape 
left of a square?

execution
engine

transform[left_of]

shape[square]

color[green]

and

scene

Prediction: yes

1 Andreas et al. Neural module networks. CVPR 2016.
2 Johnson et al. Inferring and executing programs for visual reasoning. CVPR 2017.



Core idea

● With the right layout, NMNs exhibit compositionality 1; other methods fail

● But: The right layout does not emerge naturally
○ Bahdanau et al., 20191 needed to provide correct tree-structured layouts
○ Learned layouts only converged to be robust under a strong prior for the correct structure

291 Bahdanau et al. Systematic generalization: what is required and can it be learned? ICLR 2019.



Core idea

● With the right layout, NMNs exhibit compositionality 1; other methods fail

● But: The right layout does not emerge naturally
○ Bahdanau et al., 20191 needed to provide correct tree-structured layouts
○ Learned layouts only converged to be robust under a strong prior for the correct structure

301 Bahdanau et al. Systematic generalization: what is required and can it be learned? ICLR 2019.

Use IL to encourage structured layouts towards systematic generalization



Method
Article 1
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Standard NMN training

and(
    color[green]( scene ),
    transform[left_of](
         shape[square]( scene )
    )
)

program 
generator

is a green shape 
left of a square?

execution
engine

transform[left_of]

shape[square]

color[green]

and

scene

Prediction: yesTarget: yes
CE loss



transform[left_of]

shape[square]

color[green]

and

scene
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Standard NMN training

AGENT 2
EEϕ

and(
    color[green]( scene ),
    transform[left_of](
         shape[square]( scene )
    )
)

AGENT 1
PGθ

is a green shape 
left of a square?

Prediction: yesTarget: yes

Viewed as two agents with an emergent language to solve the task

Emergent Language  ẑInput  q

Input 
x

Target  y Output  ŷCE loss



transform[left_of]
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color[green]

and

scene
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Standard NMN training

AGENT 2
EEϕ

and(
    color[green]( scene ),
    transform[left_of](
         shape[square]( scene )
    )
)

is a green shape 
left of a square?

Prediction: yesTarget: yes

Viewed as two agents with an emergent language to solve the task

Emergent Language  ẑInput  q

Input 
x

Target  y Output  ŷCE loss

or GT program if available

AGENT 1
PGθ



Iterated learning for NMNs
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PGθn EEϕnq z

x

yy

^

^

Interacting 
phase
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PGθn EEϕnq z

x

yy

^

^

Interacting 
phase

PGθnq z

D

^
Transmitting 
phase

PGθn+1
(new)q z

D ẑ

~

PG learning 
phase



Iterated learning for NMNs
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PGθn EEϕnq z

x

yy

^

^

Interacting 
phase

PGθnq z

D

^
Transmitting 
phase

PGθn+1
(new)q z

D ẑ

~

PG learning 
phase

PGθn+1
(new)

EEϕn+1
(new)q z

x

y

[frozen]

y

~

~

EE learning 
phase



Limit the length of the learning phases: Early stopping
● Generally a sweet spot for the number of steps

Learning bottleneck

39

Program generator learning phase steps
● Too few: Low confidence in utterances, high variance
● Too many: Overfitting to transmitted data PGθn+1

(new)q z

D ẑ

~

Execution engine learning phase steps
● Too few: High variance gradients at the start of interacting phase
● Too many: Overfitting to an imperfect program generator

PGθn+1
(new)

EEϕn+1
(new)q z

x

y

[frozen]

y

~

~



Results with CLEVR
Article 1



CLEVR/CLOSURE example

41

Figure taken from 2

1 Johnson et al. CLEVR A diagnostic dataset for compositional language and elementary visual reasoning. CVPR 2017.
2 Bahdanau et al. CLOSURE Assessing Systematic Generalization of CLEVR Models. arXiv:1912.05783 2019.

1

1

2



CLEVR with 100 GT programs

42

Tensor-NMN modules are residual blocks1 with separate parameters, from 2
Vector-NMN modules share parameters with separate FiLM3 adapters, from 4

● All models reach similar training accuracies
● IL leads to significantly higher program accuracy
● The generalization difference is more apparent in the OOD CLOSURE dataset

1 He et al. Deep residual learning for image recognition. CVPR 2016.
2 Johnson et al. Inferring and executing programs for visual reasoning. CVPR 2017.

3 Perez et al. FiLM Visual Reasoning with a General Conditioning Layer. AAAI 2018.
4 Bahdanau et al. CLOSURE Assessing Systematic Generalization of CLEVR Models. arXiv:1912.05783 2019.



CLOSURE categories: 100 GT programs

43

● IL improves performance on all but one CLOSURE category
● Tensor-NMN with IL leads to CLEVR accuracy similar to previous works with far fewer programs

○ 18,000 for Johnson et al., 20171, 1,000 for Vedantam et al., 20192

1 Johnson et al. Inferring and executing programs for visual reasoning. CVPR 2017.
2 Vedantam et al. Probabilistic neural symbolic models for interpretable visual question answering. ICML 2019.



Conclusion
Article 1



Key takeaways

45

Iterated learning is more broadly applicable where hard-to-learn compositional 
latents are desired, beyond simple referential games

Iterated learning amplifies compositionality when a preference for it exists
● In addition to model architecture, this bias can be imparted through few-shot supervision
● Emergent compositional structure can improve downstream systematic generalization

○ We find similar gains in simpler SHAPES) and larger real-world image GQA) settings



2 Forgetting and Relearning



Forgetting and relearning in humans
● Forgetting can be frustrating, but it is beneficial

● Spacing effect1
○ More effective learning with spaced-out study sessions

● Forgetting allows integration of new perspectives 
and knowledge unburdened by biases of the past

471 Ebbinghaus. Memory: A Contribution to Experimental Psychology. Duncker & Humblot, 1885.

Figure based on 1



Forgetting and relearning in humans
● Forgetting can be frustrating, but it is beneficial

● Spacing effect1
○ More effective learning with spaced-out study sessions

● Forgetting allows integration of new perspectives 
and knowledge unburdened by biases of the past

481 Ebbinghaus. Memory: A Contribution to Experimental Psychology. Duncker & Humblot, 1885.

Figure based on 1

Under continuous forgetting and relearning:

Less relevant and specialized information fades away, while more 
pertinent and structurally coherent knowledge is retained



Forgetting and relearning in ML

● The forget-and-relearn1 paradigm 
typically partially resets weights to “forgetˮ 
before continuing training for “relearningˮ

● Iterated learning can be seen as an 
instance of forget-and-relearn

● Iterative resetting counters the primacy 
bias in reinforcement learning 2

491 Zhou et al. Fortuitous forgetting in connectionist networks. ICLR 2022.
2 Nikishin et al. The primacy bias in deep reinforcement learning. ICML 2022.

Figure taken from 2
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Sharpness-Aware Minimization SAM

Assumption: Flatter loss surface regions generalize better

SAM1 is motivated to guide optimization to flatter regions of the loss surface

● Reduce sharpness by approximately
minimizing a PACBayes upper bound

● Algorithm:
○ Perturb by maximizing loss
○ Compute minimization gradient
○ Step from unperturbed weights

511 Foret et al. Sharpness-aware minimization for efficiently improving generalization. ICLR 2021.

Figure taken from 1



Unresolved concerns with SAM

Improved generalization with SAM deviates from its motivating theory

● The PACBayes bound does not sufficiently explain SAMʼs benefits 1
○ Bound derived for random perturbations, which perform worse in practice
○ Steepest ascent perturbations loosen the bound but perform better
○ mSharpness: Why do smaller perturbing batches perform better?

● Empirically, flatness and generalization do not correlate in general 2

521 Andriushchenko et al. Towards understanding sharpness-aware minimization. ICML 2022.
2 Andriushchenko et al. A modern look at the relationship between sharpness and generalization. ICML 2023.



Method
Article 2



“Perturbed forgettingˮ perspective

Steepest ascent gradients for a small set of m samples can reveal undesirable 
shortcuts the model learned for them

● Perturbing discards them
● Predictions then utilize the global learned structure
● Gradients strengthen this global structure

54

● SAM dynamics perform forgetting and relearning without erasing learned state

● Perturbations can discard undesirable model biases



Decrease

● Model biases can be exposed via 
outputs

● Perturbing can target and discard them

Avoid increasing

● Minimizing the loss makes it easier 
to identify D as the training dataset

● Perturbing does not minimize loss

Information-theoretic argument

Generalization gap bound from 1

551 Kawaguchi et al. How does information bottleneck help deep learning? ICML 2023.



Minimizing (for learning) pushes 
down more on worse predictions

Maximizing (for perturbing) pulls up more on worse 
predictions

Forgetting some biases but amplifying others

Output bias forgetting OBF

Gradient of cross-entropy CE) with logits   :

56



Minimizing (for learning) pushes 
down more on worse predictions

Maximizing (for perturbing) pulls up more on worse 
predictions

Forgetting some biases but amplifying others

Output bias forgetting OBF

Gradient of cross-entropy CE) with logits   :

57

α = 0 α = 1Like cross-entropy, 
without bias amplification

Negative cross-entropy 
with uniform targets

The OBF perturbation minimizes target likelihood without bias amplification



Results
Article 2



Forgetting vs. generalization
● Train ViTS/32 models on CIFAR10 with perturbing batch sizes 
● Discretize model outputs with varying thresholds

59

There exist thresholds where generalization correlates more strongly with 
forgetting than flatness of the loss surface.



OBF vs. standard SAM variants

60

1 Foret et al. Sharpness-aware minimization for efficiently improving generalization. ICLR 2021.
2 Zhuang et al. Surrogate gap minimization improves sharpness-aware training. ICLR 2022.
3 Kwon et al. ASAM Adaptive sharpness-aware minimization for scale-invariant learning of deep neural networks. ICML 2021.



Conclusion
Article 2



Key takeaways

Targeted forgetting and relearning can be a powerful driver of generalization
● Gradient-based approaches are effective at targeting undesirable biases
● Perturbed forgetting protects the global model state against suboptimal forgetting steps

SAMʼs training dynamics are more important than loss surface flatness
● Is the pursuit of flatter minima misleading?

62



3 Selective Attention



Selective attention in humans

● Human working memory is extremely limited
○ It can can hold at most 4 “chunksˮ of information at a time 1

● Selective attention is critical in managing these limited mental resources
○ We prioritize stimuli that is most relevant, and ignore the rest 2

○ Humans struggle to simultaneously attend to separable features (color, shape, orientation) 3, 
or novel objects at the same location 4

64
1 Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage 

capacity. Behavioral and brain sciences, 2001.
2 Treisman. Strategies and models of selective attention. Psychological review, 1969.

3 Treisman and Gelade. A feature-integration theory of attention. Cognitive psychology, 1980.
4 Rock and Gutman. The effect of inattention on form perception. Journal of Experimental 

Psychology: Human Perception and Performance, 1981.



Selective attention in humans

● Human working memory is extremely limited
○ It can can hold at most 4 “chunksˮ of information at a time 1

● Selective attention is critical in managing these limited mental resources
○ We prioritize stimuli that is most relevant, and ignore the rest 2

○ Humans struggle to simultaneously attend to separable features (color, shape, orientation) 3, 
or novel objects at the same location 4

65
1 Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage 

capacity. Behavioral and brain sciences, 2001.
2 Treisman. Strategies and models of selective attention. Psychological review, 1969.

3 Treisman and Gelade. A feature-integration theory of attention. Cognitive psychology, 1980.
4 Rock and Gutman. The effect of inattention on form perception. Journal of Experimental 

Psychology: Human Perception and Performance, 1981.

A preference for learning separable concepts eases learning 
compositional representations of our knowledge, which is essential to 

act effectively with limited cognitive resources in the world



Selective attention in machine learning

● The attention mechanism1 is closely related to selective attention
○ Refined and popularized by the Transformer2 architecture

● In transformers, selective attention is implicitly performed for hierarchical 
construction of internal representations

● But when explicitly learning representations for future downstream tasks, 
a prior for separately-attendable concepts is not automatically granted

○ Deprives downstream tasks easy access to task-relevant aspects of the dataʼs structure

661 Bahdanau et al. Neural machine translation by jointly learning to align and translate. ICLR 2015.
2 Vaswani et al. Attention is all you need. NeurIPS 2017.
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the car?

Describe the building 
architecture. Are people arriving or leaving?

Input image

ViT
Encoder

(blocks
1 to N1

Attention mechanism 
with 3 example heads

Attn head 1 output
Vehicle features

Attn head 2 output
Background features

Attn head 3 output
Person features
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What is the make and model of 
the car?

Describe the building 
architecture. Are people arriving or leaving?

Input image

ViT
Encoder

(blocks
1 to N1

Attention mechanism 
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SPARO
(Separate-head Attention Read-Out)

SPARO is a read-out mechanism for transformers that explicitly structures 
encodings as a collection of separately-attended concepts.



SPARO with CLIP
Article 3



CLIP1

Contrastive Language-Image Pre-training)
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Figure taken from 1

1 Radford et al. Learning transferable visual models from natural language supervision. ICML 2021.
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SPARO with CLIP
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SPARO imposes a prior that both modalities share the same 
compositional world with the same attendable concepts



CLIP Experiments
Article 3



Zero-shot and linear probe accuracies
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Post-hoc concept selection

Pretrained SPARO 
representation
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Post-hoc concept selection

Pretrained SPARO 
representation

SPARO representation used 
for downstream task

Select slots for 
downstream task
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Post-hoc concept selection

Pretrained SPARO 
representation

SPARO representation used 
for downstream task

Select slots for 
downstream task
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Intervening to select a subset of slots with the 
highest ImageNet zero-shot performance



Visualizations
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Conclusion
Article 3



Key takeaways

Attention offers a scalable solution to impart a stronger bias for 
compositionality

● Constructing encodings as slots produced by bottlenecks of separate attention heads 
encourages learning of data variations in terms of concepts represented by the heads

○ In CLIP, adds an additional prior for the modalities to share the same set of concepts

● Models trained with selective attention constraints achieve better downstream generalization
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Conclusion of the presentation>



Discussion

● Caveats in taking insights from cognitive science
○ Human learning utilizes a vast repository of prior knowledge, experience, and is intertwined with 

motivation, curiosity, and emotions
○ A large number of complex cognitive phenomena occur simultaneously and cognitive science 

models often simplify processes to make them tractable for study
○ Directly translating these simplified models into machine learning risks overlooking the nuanced 

nature of human cognition and the fundamental differences in optimization

● Humans do not always systematically generalize
○ Ability to perform complex, systematic logical inferences often requires thorough practice
○ Machine learning models, however, often fail at tasks human common sense succeeds at

● Systematic generalization is not sufficient in the real world
○ Models can systematically generalize on systemic biases
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Open questions
● Iterated learning IL

○ Can IL help when there is no clear preference for a beneficial structure?
○ Can we dynamically adapt the learning bottleneck during training?
○ Can we distill ILʼs dynamics into a method that does not require a speaker-listener setup?

● Perturbed forgetting and SAM
○ Can we separate perturbed forgetting into a more general framework beyond SAM?
○ In the perturbed forgetting perspective of SAM, what really are the undesirable biases?
○ Is there a relationship between perturbed forgetting dynamics and loss surface flatness?

● SPARO
○ Can IL amplify SPAROʼs preference for compositionality for cleaner disentanglement?
○ Can we guide the type of concepts SPARO should prioritize learning?
○ Can SPARO offer insights for improving the internal attention mechanisms of transformers?
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Thank you!
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