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Humans are pretty good at Systematic Generalization




[ Humans are pretty good at Systematic Generalization

e |[f you know what “a cat chases a mouse” means, no trouble understanding

what "a Roomba chases an elephant” means
o Even if you have never encountered the phrase before

e Systematic generalization!" is the consistent application of learned rules to
unseen situations

[1] Fodor and Pylyshyn. Connectionism and cognitive architecture: A critical analysis. Cognition, 1988.



[ Humans are pretty good at Systematic Generalization

e |[f you know what “a cat chases a mouse” means, no trouble understanding

what "a Roomba chases an elephant” means
o Even if you have never encountered the phrase before

e Systematic generalization!" is the consistent application of learned rules to
unseen situations

[ Humans are pretty good at Compositional Generalization

e |f you understand “red sphere” and “blue cube,” you understand “red cube”

[1] Fodor and Pylyshyn. Connectionism and cognitive architecture: A critical analysis. Cognition, 1988.
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But machine learning models can be pretty bad at behaving
systematically and understanding compositionality
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But machine learning models can be pretty bad at behaving
systematically and understanding compositionality

Standard i.i.d. assumption in machine learning: Test data comes from the
same distribution as the training data
o Possible catastrophic drops in performance when violated

For a model capable of systematic generalization

o Instead of performance depending on divergence between training and test distributions,
o Performance depends on the discrepancy in the mechanistic processes generating the
training and testing observations

10
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How a model behaves on samples outside the training
distribution depends on its inductive biases

n
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How a model behaves on samples outside the training
distribution depends on its inductive biases

e [nductive biases: assumptions by a model to generalize to unseen data
o Shaped by network architecture, training objective, regularization, optimization, etc.

12
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How a model behaves on samples outside the training
distribution depends on its inductive biases

e [nductive biases: assumptions by a model to generalize to unseen data
o Shaped by network architecture, training objective, regularization, optimization, etc.

What are the inductive biases behind human learning that
allows us to systematically generalize?

13
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Cognitive bottlenecks

e Overwhelming abundance of stimuli around us,
and human mental resources are limited

e Our cognitive processes impose bottlenecks for what information is

stored, retained, and consciously attended
o The inductive biases imparted by these bottlenecks are crucial for systematicity

14
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This thesis explores how inductive biases in machine learning can be
informed and developed through insights from cognitive bottlenecks
behind human learning and knowledge representation

Cognitive bottlenecks we will discuss:

1. Iterated learning
2. Forgetting and relearning
3. Selective attention

15



o £ Mila Ui

d Mont al

lterated Learning



/ D Universitéf”\
terated learning with humans ' o

Language 0

-

\,\)._ :’ pltu
.‘\\4 kalu

A4 nane

- ~

@ . neki

> luki

’
t

5 *, namola

@« mola

A4 kalakihu

(Based on [1,2])

[1] Kirby et al. Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. National Academy of Sciences (2008). 17
[2] Kirby et al. Iterated learning and the evolution of language. Current opinion in neurobiology 28 (2014).
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[1] Kirby et al. Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. National Academy of Sciences (2008). 18
[2] Kirby et al. Iterated learning and the evolution of language. Current opinion in neurobiology 28 (2014).
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[1] Kirby et al. Cumulative cultural evolution in the laboratory: An experimental approach to the origins of structure in human language. National Academy of Sciences (2008). 19

[2] Kirby et al. Iterated learning and the evolution of language. Current opinion in neurobiology 28 (2014).
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[2] Kirby et al. Iterated learning and the evolution of language. Current opinion in neurobiology 28 (2014).
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Learning bottleneck

e Need to learn an highly expressive language
o  Through limited supervision

e |Language properties likely to pass through become universal

o Compositional rules are more likely to survive the transmission ™
m Easierto learn
m Fastertolearn

[1] Kirby. Spontaneous evolution of linguistic structure-an iterated learning model of the emergence of regularity and irregularity. IEEE Transactions on Evolutionary

Computation (2001). 21
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Iterated Learning for Emergent Systematicity in VQA

Max Yuchen Eeshan Aaron
Schwarzer Lu Dhekane Courville

International Conference on Learning Representations (ICLR), 2021
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e In 2020, iterated learning (IL) in ML stayed close to its Cog Sci roots
o Most of the work involved agents playing very simplistic referential games 2345

[4] Cogswell et al. Emergence of compositional language with deep generational transmission.

[1] Li and Bowling. Ease-of-teaching and language structure from emergent communication. arXiv:1904.09067 (2019).
NeurlPS 2019. [5] Guo et al. The emergence of compositional languages for numeric concepts through iterated learning
[2] Ren et al. Compositional languages emerge in a neural iterated learning model. ICLR 2020. in neural agents. arXiv:1910.05291 (2019). 23

[3] Dagan et al. Co-evolution of language and agents in referential games. EACL 2021. [6] Zheng et al. Iterated learning improves compositionality in large vision-language models. CVPR 2024.
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e In 2020, iterated learning (IL) in ML stayed close to its Cog Sci roots
o Most of the work involved agents playing very simplistic referential games 2345

e Claim: Learning bottleneck is a fundamental way to recover structure

e We demonstrated broader applicability through the more complex task of

visual question-answering (VQA)
o Since then, IL has been applied to improve compositional generalization in larger and
real-world settings, e.g., training vision-language models like CLIP [©

[4] Cogswell et al. Emergence of compositional language with deep generational transmission.

[1] Li and Bowling. Ease-of-teaching and language structure from emergent communication. arXiv:1904.09067 (2019).
NeurlPS 2019. [5] Guo et al. The emergence of compositional languages for numeric concepts through iterated learning
[2] Ren et al. Compositional languages emerge in a neural iterated learning model. ICLR 2020. in neural agents. arXiv:1910.05291 (2019). 24

[3] Dagan et al. Co-evolution of language and agents in referential games. EACL 2021. [6] Zheng et al. Iterated learning improves compositionality in large vision-language models. CVPR 2024.
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Visual question-answering (VQA)

(Image taken from SHAPES [)

Q: Is a green shape left of a square?

[1] Andreas et al. Neural module networks. CVPR 2016. 25
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Visual question-answering (VQA)

(Image taken from SHAPES [)

Q: Is a green shape left of a square? A: Yes

[1] Andreas et al. Neural module networks. CVPR 2016. 26
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Visual question-answering (VQA)

(Image taken from SHAPES [)

Q: Is a green shape left of a square? A: Yes

N /7

and(
Prog Ffams. color[green]( scene ),

transform[left _of](
shape[square]( scene )

)
)

[1] Andreas et al. Neural module networks. CVPR 2016. 27
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Prediction: yes

t

4 N
and(
. color[green]( scene ), color[green] transform[left_of]
is a green shape program transform[ left_of](
left of a square? generator : shape[square]( scene )
) shape[square]
execution
engine
. J

[1] Andreas et al. Neural module networks. CVPR 2016.
[2] Johnson et al. Inferring and executing programs for visual reasoning. CVPR 2017.

28
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Core Idea

e With the right layout, NMNs exhibit compositionality "; other methods fail

e But: The right layout does not emerge naturally

o Bahdanau et al., 2019 needed to provide correct tree-structured layouts
o Learned layouts only converged to be robust under a strong prior for the correct structure

29

[1] Bahdanau et al. Systematic generalization: what is required and can it be learned? ICLR 2019.
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Core idea

e With the right layout, NMNs exhibit compositionality "; other methods fail

e But: The right layout does not emerge naturally

o Bahdanau et al., 2019 needed to provide correct tree-structured layouts
o Learned layouts only converged to be robust under a strong prior for the correct structure

Use IL to encourage structured layouts towards systematic generalization

30

[1] Bahdanau et al. Systematic generalization: what is required and can it be learned? ICLR 2019.
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CE loss i
Target: yes <----------- » Prediction: yes
4 R
and(
. color[green]( scene ), color[green] transform[left_of]
is a green shape program transform[ left_of](
left of a square? generator shape[square]( scene )
) : shape[square]
execution
engine
& J
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Target y €----------- > OUtpUt §
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Input q PG, Emergent Language z — EE¢

Input
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Standard NMN training

Target y €----------- > OUtpUt §

t

AGENT 1 . AGENT 2
PG Emergent Language z — EE

0 or GT program if available ¢

Input q

Input
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4 y <y )
T

Interacting
phase
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Learning bottleneck

Limit the length of the learning phases: Early stopping

e Generally a sweet spot for the number of steps
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Program generator learning phase steps X
A
e Too few: Low confidence in utterances, high variance ;
e Too many: Overfitting to transmitted data q _.lznGeeml_. 5

J

. . . Yy <Y )
Execution engine learning phase steps Y

e Too few: High variance gradients at the start of interacting phase q _’I:See%l_' Z —»Efgvnv;l

e Too many: Overfitting to an imperfect program generator (frozen] f

x J
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[ Q1 (CLEVR): There is another cube that is the same size as
the brown cube; what is its color?
i Q2 (CLEVR): There is a thing that is in front of the yellow
thing; does it have the same color as cylinder?
[2]Q3 (CLOSURE): There is another rubber object that is the
same size as the gray cylinder; does it have the same color
as the tiny shiny block? (Figure taken from [2])

[1] Johnson et al. CLEVR: A diagnostic dataset for compositional language and elementary visual reasoning. CVPR 2017. a1
[2] Bahdanau et al. CLOSURE: Assessing Systematic Generalization of CLEVR Models. arXiv:1912.05783 (2019).
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1.0 1.0 1.0
0.9 0.9 -
0.8 0.8
S > > 0.6
] g ]
5 0.7 507 5
8 8 3
2 < < 044
0.6 0.6
—— Vector-NMN —— Vector-NMN —— Vector-NMN
0.5 1 Tensor-NMN 0.5 1 Tensor-NMN 021 § Tensor-NMN
: —— Vector-NMN+IL : —— Vector-NMN+IL —— Vector-NMN+IL
—— Tensor-NMN+IL —— Tensor-NMN+IL —— Tensor-NMN+IL
0.4 - : : : 0.4 T - - : 0.0 : . - -
0 40000 80000 120000 160000 200000 40000 80000 120000 160000 200000 0 40000 80000 120000 160000 200000
Steps Steps Steps
(a) Task training accuracy. (b) Task validation accuracy. (c) Program accuracy.

Tensor-NMN: modules are residual blocks!” with separate parameters, from [2]
Vector-NMN: modules share parameters with separate FiLM"®! adapters, from [4]

e All models reach similar training accuracies
e |L leads to significantly higher program accuracy
e The generalization difference is more apparent in the OOD CLOSURE dataset

[1] He et al. Deep residual learning for image recognition. CVPR 2016. [3] Perez et al. FiLM: Visual Reasoning with a General Conditioning Layer. AAAI 2018. 42
[2] Johnson et al. Inferring and executing programs for visual reasoning. CVPR 2017. [4] Bahdanau et al. CLOSURE: Assessing Systematic Generalization of CLEVR Models. arXiv:1912.05783 (2019).
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CLOSURE categories: 100 GT programs o

g Tensor-NMN Vector-NMN
Evaluation set
Without IL With IL Without IL With IL

CLEVR-Val 0.912 4+ 0.07 0.964 +£0.01 0.960 +=0.01 0.964 + 0.00
and_mat_spa 0.278 £ 0.17 0.264 +0.16 0.400 £0.13 0.335+£0.18
or_mat 0327 £ 0.11 0.481 £0.24 0.367+0.11 0.563 +0.23
or_mat._spa 0.286 = 0.13 0.405 +£0.22 0.330%0.11 0.444 +0.24
compare_mat 0.793 = 0.11 0.851 £0.17 0.660 = 0.16 0.873 +0.12
compare_mat_spa 0.746 +0.13 0.853 +0.15 0.6774+0.14 0.871 £0.12
embed_spa_mat 0.824 £+ 0.07 0.947 +£0.03 0.863 = 0.07 0.900 £ 0.08
embed_mat_spa 0.73910.14 0.941 £0.02 0.894 +0.03 0.936 +£0.03

IL improves performance on all but one CLOSURE category
Tensor-NMN with IL leads to CLEVR accuracy similar to previous works with far fewer programs

o 18,000 for Johnson et al., 2017 1000 for Vedantam et al., 2019!%

[1] Johnson et al. Inferring and executing programs for visual reasoning. CVPR 2017. 43
[2] Vedantam et al. Probabilistic neural symbolic models for interpretable visual question answering. ICML 2019.
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lterated learning is more broadly applicable where hard-to-learn compositional
latents are desired, beyond simple referential games

lterated learning amplifies compositionality when a preference for it exists

e |n addition to model architecture, this bias can be imparted through few-shot supervision
e Emergent compositional structure can improve downstream systematic generalization
o  We find similar gains in simpler (SHAPES) and larger real-world image (GQA) settings

45
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Forgetting and relearning in humans

e Forgetting can be frustrating, but it is beneficial

e Spacing effect!”
o More effective learning with spaced-out study sessions

e Forgetting allows integration of new perspectives
and knowledge unburdened by biases of the past

[1] Ebbinghaus. Memory: A Contribution to Experimental Psychology. Duncker & Humblot, 1885.

% Information Retained

ey M 'I Université f'”'l
L lia de Montréal

7
%,
2

~— e

Time Elapsed

(Figure based on [1])

47
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Forgetting and relearning in humans

e Forgetting can be frustrating, but it is beneficial

7
%,
2

e Spacing effect!”
o More effective learning with spaced-out study sessions

% Information Retained

e Forgetting allows integration of new perspectives \. """""""""
and knowledge unburdened by biases of the past p

(Figure based on [1])

Under continuous forgetting and relearning:

Less relevant and specialized information fades away, while more

S pertinent and structurally coherent knowledge is retained )

[1] Ebbinghaus. Memory: A Contribution to Experimental Psychology. Duncker & Humblot, 1885. 48
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Forgetting and relearning in ML

cheetah-run finger-turn_hard
1000 1000
e The forget-and-relearn!” paradigm g » 0
~ 600
typically partially resets weights to “forget” £ . S0
before continuing training for “relearning” 200 -
0
hopper-hop humanoid-run
250
e |terated learning can be seen as an » (i 200
instance of forget-and-relearn o
2 200
& 50
e [terative resetting counters the primacy ° '
. . . . [ 2] 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
bias in reinforcement |earn|ng Environment Steps (X 10°) Environment Steps (X 10°)

— SAC — SAC-Heselsl

(Figure taken from [2])

[1] Zhou et al. Fortuitous forgetting in connectionist networks. ICLR 2022.

[2] Nikishin et al. The primacy bias in deep reinforcement learning. ICML 2022. 49
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Forget Sharpness:
Perturbed Forgetting of Model Biases Within SAM Dynamics

2 8

Ankit Frederick Gabriel Hossein
Vani Tung Oliveira  Sharifi-Noghabi

International Conference on Machine Learning (ICML), 2024
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Assumption: Flatter loss surface regions generalize better

SAMM™ is motivated to guide optimization to flatter regions of the loss surface

e Reduce sharpness by approximately
minimizing a PAC-Bayes upper bound

Wis T —
i —NVL(w
e Algorithm: y
imizi AN Wi w
o Perturb by maximizing loss Lo, VEW ) * s
o Compute minimization graqlent o) ey
o  Step from unperturbed weights T

(Figure taken from [1])

51

[1] Foret et al. Sharpness-aware minimization for efficiently improving generalization. ICLR 2021.
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Improved generalization with SAM deviates from its motivating theory

e The PAC-Bayes bound does not sufficiently explain SAM's benefits 1"
o Bound derived for random perturbations, which perform worse in practice
o Steepest ascent perturbations loosen the bound but perform better
o m-Sharpness: Why do smaller perturbing batches perform better?

e Empirically, flatness and generalization do not correlate in general 2

[1] Andriushchenko et al. Towards understanding sharpness-aware minimization. ICML 2022.
[2] Andriushchenko et al. A modern look at the relationship between sharpness and generalization. ICML 2023.

52
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"Perturbed forgetting” perspective

e SAM dynamics perform forgetting and relearning without erasing learned state

e Perturbations can discard undesirable model biases

Steepest ascent gradients for a small set of m samples can reveal undesirable
shortcuts the model learned for them

e Perturbing discards them
e Predictions then utilize the global learned structure
e (Gradients strengthen this global structure

54
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I(X;Y |Y)+I(6;D)
n

Generalization gap bound from [1]: A(8) € O \/

4 N N

Avoid increasing I1(6;D) Decrease I(X;Y |Y)
e Minimizing the loss makes it easier e Model biases can be exposed via
to identify D as the training dataset outputs Y’
e Perturbing does not minimize loss e Perturbing can target and discard them

- AN /

[1] Kawaguchi et al. How does information bottleneck help deep learning? ICML 2023. 55
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Output bias forgetting (OBF)

Gradient of cross-entropy (CE) with logits z:
VoL (1, 9) = Ei 5 [ Voz]| — Voz,

Minimizing (for learning) pushes Maximizing (for perturbing) pulls up more on worse
down more on worse predictions Q predictions
Forgetting some biases but amplifying others Q

56
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Output bias forgetting (OBF)

Gradient of cross-entropy (CE) with logits z:
VoLCE(y,.f’) =E;y [Vazi] - V0Zy

Minimizing (for learning) pushes Maximizing (for perturbing) pulls up more on worse
down more on worse predictions Q predictions
Forgetting some biases but amplifying others @

The OBF perturbation minimizes target likelihood without bias amplification
VoLBF()’aS’) = [EiNUniform [ngi] - (a[Ei~j [ngi] + (1 - (l) V0Zy>

Like cross-entropy, & = 0 a=1 Negative cross-entropy
without bias amplification > with uniform targets

57
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Forgetting vs. generalization o

e Train ViT-S/32 models on CIFAR-10 with perturbing batch sizes m € {2* | k € {0,...,9}}
e Discretize model outputs with varying thresholds

---- + Dominant EV (sharpness) —— I(Y;Y)=I(¥Y?;Y) —— IX;Y|Y)—I(X;¥P|Y) [ 7 for I(X; ¥|Y) = T for sharpness
> 1.0 > 1.0 > 1.0
@ © (]
7 I | e 5 < e (R — =
5 _/_}\A/_/Ih:\ = 5
8 051 8 051 8 051
© © ©
< < ]
= = =
= 0.0 5 00 5 00
= = = _/
w k%) »
= —0.51 = —0.51 = —=0.51
s g L— A, g L—
G ] S B— g - ———
M —1.0 T T T M —1.0 T T T M —1.0 T T T
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
Adjusted binning threshold for ¥ Adjusted binning threshold for ¥ Adjusted binning threshold for ¥
(a) SAM bM)OBF (v=1) (c) OBF (y =1/3)

There exist thresholds where generalization correlates more strongly with
forgetting than flatness of the loss surface.
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OBF vs. standard SAM variants
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ImageNet-
Model Method  Perturb = Sharpness
V1 Real V2 R Sketch
AdamW  None 69.29+026 75.31+028 55.48+058 19.02+047 16.38+034 165.6+15.2
SAMIL Standard 72.77+0.06 78.89+005 58.81+033 21.63+0.23 19.68+t050 14.9+11
OBF 74.49+004 81.31+005 61.13+1018 25.31+041 22.581013 3.9+1.4
VIT-S/32 o apizn Standard  73.41x005  79.481008 59.944015 22.18015 20.28015  11.6x12
OBF 74.41+012 81.41+011 61.08+018 25.15+023 22.24+0.07 3.1+07
ASAM3! Standard 74.45+011 81.23+011 60.78+025 24.07+012 21.68+0.23 6.5+0.4
OBF 74.73+019 81.24+025 60.95+028 24.65+026 22.40+010 30.3+11.6
SGD None 76.86+007 83.28+0.11 65.00+014 20.29+036 20.53+046 230.4+427
SAMIL Standard 77.49x0.06 83.78+005 65.26+021 21.08+016 21.18+032 170.1x189
OBF 77.67+007 84.01+003 65.70+045 21.63+018 22.17+026 164.4+250
ResNet-50 . \iz1 Standard  77.43:012 83794019 65.37x026 21.371021 21.521056 171.0:168
OBF 77.66+008 84.09+007 66.01+009 21.76+023 22.26+047 161.4+109
ASAM3! Standard 77.30+0.02 84.07+0.03 65.55+016 21.71+0.02 21.75+t015 33.6+2.99
OBF 78.17+0.07 84.66+005 66.55+015 23.84+0.12 24.21+i042 39.1+128

Université f”\

de Montréal

[1] Foret et al. Sharpness-aware minimization for efficiently improving generalization. ICLR 2021.
[2] Zhuang et al. Surrogate gap minimization improves sharpness-aware training. ICLR 2022.
[3] Kwon et al. ASAM: Adaptive sharpness-aware minimization for scale-invariant learning of deep neural networks. ICML 2021. 60
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Key takeaways

Targeted forgetting and relearning can be a powerful driver of generalization

e Gradient-based approaches are effective at targeting undesirable biases
e Perturbed forgetting protects the global model state against suboptimal forgetting steps

SAM's training dynamics are more important than loss surface flatness

e Is the pursuit of flatter minima misleading?
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Selective attention in humans

e Human working memory is extremely limited
o It can can hold at most ~4 “chunks” of information at a time "

e Selective attention is critical in managing these limited mental resources
o We prioritize stimuli that is most relevant, and ignore the rest 1

o Humans struggle to simultaneously attend to separable features (color, shape, orientation) 1°!,
or novel objects at the same location #!

[1] Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage
capacity. Behavioral and brain sciences, 2001.

[2] Treisman. Strategies and models of selective attention. Psychological review, 1969.

[3] Treisman and Gelade. A feature-integration theory of attention. Cognitive psychology, 1980.
[4] Rock and Gutman. The effect of inattention on form perception. Journal of Experimental
, . 64
Psychology: Human Perception and Performance, 1981.
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Selective attention in humans

e Human working memory is extremely limited
o It can can hold at most ~4 “chunks” of information at a time "

e Selective attention is critical in managing these limited mental resources
o We prioritize stimuli that is most relevant, and ignore the rest 1

o Humans struggle to simultaneously attend to separable features (color, shape, orientation) 1°!,
or novel objects at the same location #!

A preference for learning separable concepts eases learning
compositional representations of our knowledge, which is essential to
act effectively with limited cognitive resources in the world

[1] Cowan. The magical number 4 in short-term memory: A reconsideration of mental storage
capacity. Behavioral and brain sciences, 2001.

[2] Treisman. Strategies and models of selective attention. Psychological review, 1969.

[3] Treisman and Gelade. A feature-integration theory of attention. Cognitive psychology, 1980.
[4] Rock and Gutman. The effect of inattention on form perception. Journal of Experimental
, . 65
Psychology: Human Perception and Performance, 1981.
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Selective attention in machine learning

e The attention mechanism!V is closely related to selective attention
o Refined and popularized by the Transformer!? architecture

e Intransformers, selective attention is implicitly performed for hierarchical
construction of internal representations

e But when explicitly learning representations for future downstream tasks,

a prior for separately-attendable concepts is not automatically granted
o Deprives downstream tasks easy access to task-relevant aspects of the data's structure

[1] Bahdanau et al. Neural machine translation by jointly learning to align and translate. ICLR 2015. 66
[2] Vaswani et al. Attention is all you need. NeurlPS 2017.
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SPARO:
Selective Attention for Robust and Compositional
Transformer Encodings for Vision

Ankit Bac Samuel Aaron Ranjay
Vani Nguyen Lavoie Courville Krishna

European Conference on Computer Vision (ECCV), 2024
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What is the make and model of Describe the building
the car? architecture.
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What is the make and model of Describe the building Are people arriving or leaving?
the car? architecture. Peop g 9
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What is the make and model of Describe the building

. Are people arriving or leaving?
the car? architecture. peop 9 9

I ; Attn head 1 output
‘ o s Vehicle features

' : : ViT |, Attn head 2 output
o W ‘ o3 /A _IEncoder Background features

| (blocks N| Attn head 3 output
1to N-1) Person features

l /;:!j //;’!" “\\
Input image Attention mechanism
with 3 example heads

74



What is the make and model of
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the car?

Input image

Describe the building

architecture.

Attn head 1 output
Vehicle features

| Background features

ViT é Attn head 2 output

Encoder
(blocks N| Attn head 3 output
1to N-1) Person features

Attention mechanism
with 3 example heads
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Are people arriving or leaving?

N

N

Multi-head Attn's
Linear Projection

ViT block's
MLP

Standard ViT block N

Output

(some transformation of a
mixture of attended concepts)

Standard ViT encoding
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What is the make and model of Describe the building
the car? architecture.

1l & L Attn head 1output | | |
"'j. ' | o = ! / Vehicle features
4 <l R TR SPARO

ViT é Attn head 2 output

Are people arriving or leaving?

| Background features

S e AN | Encoder
; 7 = (blocks N| Attn head 3 output
e, s = 1to N-1) Person features
AN AN\ = ) ;
Input image Attention mechanism

with 3 example heads
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Are people arriving or leaving?

ViT
Encoder

(blocks
1to N-1)

Attn head 1 output
Vehicle features

Attn head 2 output

| Background features

j Concatenate
SPARO

Slot 1

| (selective attn on

vehicles)

Slot 2

(selective attn on
background)

Slot 3

(selective attn on
persons)

N Attn head 3 output

Person features

Attention mechanism
with 3 example heads

SPARO output encoding
Explicitly structures encodings as attended concepts
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SPARO is a read-out mechanism for transformers that explicitly structures
encodings as a collection of separately-attended concepts.

. p - % Attn head 1 output : | Slot1 Slot 2 Slot 3
} 2 ; | / Vehicle features P K— Concatenate | (selective attn on | (selective attn on | (selective attn on
: / 7 105 & | vehicles) background) persons)
b & [l e . SPARO -
| ’ S Y ViT Attn head 2 output SPARO output encoding
i Background features Explicitly structures encodings as attended concepts
mie | L) ® _| Encoder g P
(blocks N Attn head 3 output Z
sy ey 1to N-1) Person features N Multi-head Attn's || ViT block's o tOuftputf ’
4 N Y < A DLE . . . g some transtormation or a
J A!‘ | i g m | Attention mechanism Linear Projection — mixture of attended concepts)
nputimage with 3 example heads Standard ViT block N Standard ViT encoding
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(Contrastive Language-Ilmage Pre-training)

(1) Contrastive pre-training

Pepper the

aussie pup Text

Encoder

Image
Encoder

(2) Create dataset classifier from label text

A photo of
a {object

T, | T, | T Tn
—> L LTy | LI'Ty | T3 I'Tn _—
(3) Use for zero-shot prediction
— [2 lZ'Tl 12'T2 12'T3 lZ'TN
™ w
» [3 l3‘T1 I3‘T2 13'T3 l3'TN Image
Encoder
—>» ]N IN'Tl ]N'TZ IN‘T3 [N'TN

(Figure taken from [1])

[1] Radford et al. Learning transferable visual models from natural language supervision. ICML 2021.

Text
Encoder
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a dog.

v A4 v A4
T T, T3 TN
11 L'Ty | LTy [ IpTs L' TN
A photo of
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SPARO with CLIP ' o

» CLIP loss

SPARO . I% conca
representation *\! ‘ SPARO . ?s §|<.
TranSformer [ ] ] ] [ ] ] [ ] ]

outpu‘ts A A A A A A A A A A

Image transformer Text transformer
. by |

Model inputs <CLS> A dog wearing a hat <eos>

4| &

SPARO imposes a prior that both modalities share the same
compositional world with the same attendable concepts
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/ero-shot and linear probe accuracies

ImageNet-
Train

Model
V1 V2 Sketch A R

Net

Object Sugar

Crepe

CLIP'® © 0.141 0.122 0.068 0.033 0.177
CC3M C+GAP 0.156 0.134 0.069 0.033 0.187
C+SPARO 0.170 0.140 0.088 0.035 0.221

0.080
0.081
0.098

0.611
0.616
0.625

CLIP*® (© 0.361 0.311 0.249 0.091 0.467
CC12M C+GAP  0.382 0.330 0.262 0.101 0.501
C+SpPArRO 0.406 0.350 0.298 0.113 0.559

0.218
0.241
0.268

0.697
0.695
0.723

CLIP' © 0.384 0.337 0.268 0.105 0.503
CC15M C+GAP  0.399 0.343 0.287 0.114 0.531
C+SparO 0.437 0.378 0.317 0.145 0.579

0.238
0.252
0.279

0.699
0.701
0.730

CLIP32 ©) 0.617 0.531 0.482 0.202 0.719
L400M C+GAP  0.623 0.537 0.492 0.212 0.725
C+SparRO 0.635 0.552 0.507 0.231 0.747

0.423
0.440
0.459

0.748
0.732
0.770

ImageNet linear probe

Model

Train: CC3M CC12M CC15M L400M
CLIP © 0.469 0.630 0.646 0.743
C+GAP 0.504 0.649 0.664 0.747
C+SpaRO  0.561 0.700 0.711 0.755
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Post-hoc concept selection

Pretrained SPARO
representation | | | | | | |
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Pretrained SPARO
representation | | | | | | |

Select slots for
downstream task

SPARO representationused | [ | ]
for downstream task
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CC15M L400M

SugarCrepe
Slots: 100% 50% 100% 25%
Pretrained SPARO Object 0.896 0.912 0.927 0.929
representation | | | | | | | Replace Attribute 0.798 0.797 0.822 0.854
Relation 0.666 0.713 0.678 0.705

Select slots for :
downstream task Swap ObjEj,Ct 0.593 0.659 0.585 0.646
Attribute 0.700 0.703 0.719 0.740
SPARO representationused [ | T ] Add Object  0.779 0.809 0.866 0.857
for downstream task Attribute 0.679 0.737 0.794 0.822
Average 0.730 0.761 0.770 0.793

Intervening to select a subset of slots with the
highest ImageNet zero-shot performance
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Visualizations

A herd of cattle walking down a road
being followed by a cowboy

L
A man sitting alone on
bench in a park

A herd of cattle walking down a road  Several surfboards standing in a row  Two peopl riding hrses on a rock
being followed by a cowboy on the beach path
7 3 g =

A herd of cattle walking down a road  Several surfboards standing in a row  Two peopl riding horses on a rock A man sitting alone on a park
being followed by a cowboy on the beach path bench in a park
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Key takeaways
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Attention offers a scalable solution to impart a stronger bias for
compositionality

e Constructing encodings as slots produced by bottlenecks of separate attention heads
encourages learning of data variations in terms of concepts represented by the heads
o In CLIP, adds an additional prior for the modalities to share the same set of concepts

e Models trained with selective attention constraints achieve better downstream generalization
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Discussion

e Caveats in taking insights from cognitive science
o Human learning utilizes a vast repository of prior knowledge, experience, and is intertwined with
motivation, curiosity, and emotions
o Alarge number of complex cognitive phenomena occur simultaneously and cognitive science
models often simplify processes to make them tractable for study
o Directly translating these simplified models into machine learning risks overlooking the nuanced
nature of human cognition and the fundamental differences in optimization

e Humans do not always systematically generalize

o Ability to perform complex, systematic logical inferences often requires thorough practice
o Machine learning models, however, often fail at tasks human common sense succeeds at

e Systematic generalization is not sufficient in the real world
o Models can systematically generalize on systemic biases
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Open guestions

e lterated learning (IL)

o Can IL help when there is no clear preference for a beneficial structure?
o Can we dynamically adapt the learning bottleneck during training?
o Can we distill IL's dynamics into a method that does not require a speaker-listener setup?

e Perturbed forgetting and SAM

o Can we separate perturbed forgetting into a more general framework beyond SAM?
o Inthe perturbed forgetting perspective of SAM, what really are the undesirable biases?
o s there a relationship between perturbed forgetting dynamics and loss surface flatness?

® SPARO
o Can IL amplify Sparo's preference for compositionality for cleaner disentanglement?
o Can we guide the type of concepts Sparo should prioritize learning?
o  Can Sparo offer insights for improving the internal attention mechanisms of transformers?
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